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Two numerical techniques which can be applied ta time-dependent quantum-mechanical 
problems are described and compared with a predictor-corrector-type method. The first 
method, the piecewise Magnus solution, provides an approximate solution with the exact 
Hamiltonian by using the first Magnus approximation over many time intervals. The second 
approach, the piecewise analytical solution, produces the analytical solution to an approx- 
imate Hamiltonian obtained by ignoring off-diagonal elements within each small time interval. 
Several illustrative model problems are reported in which the speed and accuracy of these 
procedures were compared with a standard Gear package. Included in these examples is the 
physically interesting problem of using the stimulated Raman effect to produce selectively 
excited molecules. Within this problem the quality of the rotating wave approximation is 
tested. In cases with highly oscillatory wave functions, it was found that the piecewise solution 
methods performed well while the Gear program was incapable of providing a reliable 
solution. 

I. INTRODUCTION 

A broad range of physically interesting problems can be described by the time- 
dependent Schriidinger equation 

ifi $ Y(t) = H(t) Y(t). 

One important application is the interaction of a molecule with an electromagnetic 
field [l-25]‘, which includes a variety of research areas such as spectroscopy [6-l 1 ] 
and multiphoton adsorption [l&21]. Despite the tremendous chemical interest in 
understanding the interaction of radiation and matter, few accurate calculations exist 
[ 13-211. In part, this is due to the difficulty in solving the necessary set of coupled 
differential equations when the solutions are highly oscillatory or at times which are 
large compared to the size of an oscillation. 

From a mathematical point of view Eq. (1) represents a system of homogeneous, 

* Present address: Exxon Production Research Company, P.O. Box 2189, Houston, Texas 77001. 
’ There exists a tremendous amount of literature on the various aspects of this subject. Only a few 

pertinent references will be given here. 
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first-order, ordinary differential equation boundary-value problems, and in physical 
applications the dimensionality of the system is typically in the range 10-100. 
Difficulties associated with the large number of equations and the possible presence 
of highly oscillatory terms are a primary motivation for seeking specialized numerical 
techniques for dealing with Eq. (1). A commonly used procedure for solving systems 
of ODES is based on the predictor-corrector method (261. This approach attempts to 
follow the solution vector and has difftculties if the equations are stiff or if the 
solutions are rapidly varying. Although methods exist for handling stiff sets of 
equations [27], they may not be practical when the solutions are highly oscillatory. 
Floquet theory has been successfully applied to a radiation field problem with highly 
oscillatory solutions [ 14, 151, but this theory requires that the Hamiltonian matrix 
H(t) be periodic. A recent work has proposed a method which can be used when 
there is only a single high frequency [28]. Unfortumately, many interesting physical 
applications do not comply with the restrictions necessary for either of these last two 
approaches. 

In this paper, we shall describe and apply two methods which are particularly 
useful for problems with highly oscillatory solutions. Many details of the first 
technique have been previously described [30], and it has been used for calculations 
of collisional inelasticity [30] and radiative interactions [20,21]. We shall show that 
this numerical procedure has great potential in these time-dependent studies. The 
second approach can be derived in part from other sources [3 11, but it has not been 
used for the solution of first-order differential equations. We illustrate all the 
necessary changes to adopt the procedure to solve Eq. (1). 

Section II contains a description of the details of the theory for each method, and 
the standard Gear package which was used for comparison is briefly described. The 
results of illustrative examples, in which the three different methods were compared 
for accuracy and speed, are presented in Section III. Finally, a summarization of the 
results appears in Section IV. 

II. INTEGRATION TECHNIQUES 

In this section, we shall present three methods for solving the time-dependent 
Schrodinger equation. The first, the piecewise Magnus solution, produces an approx- 
imate solution to the set of coupled first-order differential equations which arise from 
the expansion of the time-dependent Schrodinger equation in a basis set. The second 
technique, the piecewise analytic solution, yields an analytical solution to an approx- 
imate Hamiltonian. The third method, a package developed by Gear [27], directly 
follows the solution to the set of differential equations. The first two procedures follow 
the Hamiltonian while the step size of the third technique depends on the behavior of 
the solution. 

Since there is a basic difference in how these methods obtain their solutions, there 
exist separate classes of problems in which one approach is superior to the others. 
Time-dependent problems in which there are rapid variations in the solution are very 
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dificult for the Gear program to deal with; thus, the piecewise Magnus solution or 
the piecewise analytical solution methods would be superior. When rapid-time 
variations exist in the Hamiltonian, then the Gear package may be best able to 
handle the problem. The benefits of each technique will be discussed more fully later. 

An analysis of the error is included below for the two piecewise solution methods. 
This is important for practical applications since one would like to control the error 
in the solutions by varying the step sizes. 

A. The Piecewise Magnus Solution Method 

1. Theory 

In 1954 Magnus published [32] a series solution to a set of first-order differential 
equations 

of the form 

where 

(3) 

(4) 

f Y(t) = A(t) Y(t) (2) 

Y(t) = exp[Wl YtO), 

n(t) = jf A(r) d7 + +J” [A(z), j: A(o) do] d7 

i+ji [A(~),!,,A(~),!~A~)d~J do] dr 

++J,’ [ [A(r),j~A(o)do],j~A(o)do] dr + . . . . 

This solution was independently rederived later by Pechukas and Light [33]. 
Pechukas and Light applied Magnus’ solution to the time-dependent Schrodinger 

equation, illustrating the potential of the technique. Chan, Light and Lin [30] applied 
the piecewise Magnus solution method to a time-independent inelastic molecular- 
collision problem. The approach they suggest consists of two facets 

(a) Divide the time-integration interval into many steps. The solution would 
then be given by 

n-1 

Y(t,) = n eXp[n(t,-i, t,-i-l)l y(o)* 
f=O 

There is no approximation involved in this expression. 
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(b) Use only the first term in the solution series given in Eq. (4). For the time- 
dependent Schrijdinger equation we would then have 

R(t,, t,-J =$,‘” H(t) dt. 
(n-1 

The use of only this first term in the series is known as the first Magnus approx- 
imation. 

The magnitude of the error in this approach depends on the size of the steps, and 
usually the step size is reduced until the desired accuracy is achieved. Since Eq. (6) is 
exact when H is independent of time, the approximation given in (6) is accurate when 
the change in the Hamiltonian is small over the time interval. Somewhat different 
considerations apply, however, when A(t) is highly oscillatory. The terms in the 
Magnus series are integrals over the time step, and destructive interference may cause 
these integrals to decrease for larger time intervals. It may thus be advantageous to 
use large steps for oscillatory Hamiltonian matrices. This point will be expanded 
upon later. 

The same technique was rederived later by Nielson and Gordon [34] who applied 
it to collisional studies. The method was found to be fast and accurate. A variant of 
this procedure was used by Walker and Preston [ 131 to describe a multiple photon 
excitation of an anharmonic oscillator. It has recently been suggested as an efficient 
method for treating more general radiative problems [20,21]. 

A related form of the piecewise Magnus solution method is given by Askar [ 35 ] in 
his description of the stroboscopic method. The stroboscopic method eliminates the 
time dependence in the Hamiltonian within each time step while retaining the time 
variations between steps. This has the effect of removing the high-frequency time 
variations and keeping the slower systematic behavior of the solution. 

2. Error Analysis 

The error estimate of this section is obtained by examining the norm of the 
contribution made by the second term in the Magnus series for n(t) in Eq. (4). 
Assuming that the time interval is small enough that H(t) varies very little, we obtain 
the approximation for the single step absolute error in Q(t), 

(7) 

where Hk,(ti) is the (k - f)th element of the Hamiltonian matrix evaluated at ti. Since 
the solution is related to an exponential of n, this is an estimate of the norm of the 
relative error of the solution, provided that At = (ti+, - ti) is small enough that the 
noncommutativity of the matrices can be neglected. It may be noted that Eq. (7) 
indicates that the error is reduced whenever At is small, the norm of H is small, or H 
is nearly time independent. The next contribution to the error of R can be seen from 
Eq. (4) to be of the order of (At)3 multiplied by the size of the triple commutators. 
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The starting point for obtaining Eq. (7) is an expression given by Pechukas and 
Light [33] for the leading term in the remainder of the Magnus series 

where 

(9) 

and H’(t) is the derivative of the Hamiltonian. The first approximation we introduce 
is to evaluate the Hamiltonian at the endpoint of the time interval, ti+, , rather than 
finding the time I over the interval in which the norm of the Hamiltonian is largest. 
The second approximation is 

H’(ti+l)z (H(ti+,)-H(ti))l(ti+l -ti)* (10) 

When one chooses the maximum matrix element of the Hamiltonian as the norm, 
Eq. (8) reduces to Eq. (7). Neilson and Gordon [34] used an error expression which 
is equivalent to Eq. (7) but gave no derivation. 

In this work the value of E(ti) was used to determine the step size for the next time 
interval by comparing E(t,) with a tolerance parameter T. Arguments have been given 
[36] to support a formula of the form 

h “ew = [T/E@,)] I’@ + 1) hold, (11) 

where h is the step size and n is the order of the approximation in an iterative 
process. Since one can construct an iterative process in which our solution is first 
order, rt is one and we arrive at 

(4” t 1 = (At)i [T/E@,)] I” (12) 

which we subject to certain restrictions. The first condition is that the error in this 
last step not exceed the tolerance parameter times a chosen factor. If (At)i+, was 
smaller than (At)i by more than some specified factor (usually 2), then the previous 
step was redone with the smaller step size. Despite the extra work involved in recom- 
puting the same step, it is important that no one step introduce a large error into the 
solution. The second condition on Eq. (12) was that (At)i+, not exceed (At)i by the 
same factor as above (although one may choose another factor if desired). This 
precaution was taken to keep the step size from growing too large from simply a 
fortuitous small error in the previous step. For more accurate calculations the factor 
could be made smaller than 2. These two conditions taken together provided a range 
of acceptable errors around the magnitude of the tolerance parameter. 

The error analysis presented in this section can be improved when H(t) is highly 
oscillatory. In this case, cancellation effects will make the time integral of the 
commutator (the second term in Eq. (4)) smaller than is indicated by Eq. (7), leading 
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to an overestimate of the error. This destructive interference will actually cause the 
higher order terms of Eq. (4) to decrease as (dt) is increased, and the strategy of 
reducing (dt) to the point where H(t) varies little over the interval becomes very inef- 
ficient. Thus, for highly oscillatory Hamiltonians, it would seem advantageous to 
reduce the error by keeping more terms in Eq. (4) rather than by reducing the size of 
the time steps. An appropriate error analysis must first be developed before this 
approach can be implemented. However, one of the examples presented in Section 
1II.A demonstrates that very large steps can be used with the first Magnus approx- 
imation for a highly oscillatory Hamiltonian. 

B. The Piecewise Analytical Solution Method 

1. Theory 

The logic behind this method is based on our ability to solve an uncoupled set of 
differential equations. If the Hamiltonian can be transformed to a diagonal matrix, we 
can easily solve the problem. Since it requires as much effort to find a time-dependent 
transformation as it does to obtain the solution directly, we approximately 
diagonalize the Hamiltonian by using the transformation which diagonalizes it at the 
center of a small time interval and ignore the off-diagonal elements. 

The method can be described as follows: The Schrddinger equation is rewritten as 

ih $v(I) = H(t) v(t) = (A + Bf(t) + Q(t) + ***) W(t), (13) 

where A, B, and C are constant matrices and f(t) and g(t) are integrable functions of 
time. As a point of flexibility, one may ignore time dependencies in the Hamiltonian 
(e.g., high frequency terms as in the stroboscopic method [35]) which will be unim- 
portant in the solution, but the expansion must remain Hermitian. A time interval is 
chosen such that the time variation in the Hamiltonian is small and the unitary 
matrix U is obtained which diagonalizes H at the center of the interval, t,. Hence, 
Eq. (13) becomes 

ih $ U+w(t) = U +H(t) UU +ty(t) 

= U+(A + BVW --fkJl + CL g(t) -&,)I + .*.I uu+v(t) 
= (A + U+BUf(t) + U+CUg(t) + ..-) U+ty(t), (14) 

where f(t) =f(t) --f(t,) and g(t) = g(t) - g&J, A is equal to H at to and A is the 
resulting diagonal matrix after the transformation. Generally, U +BU and U ‘CU will 
not be diagonal, but it is reasonable to ignore the off-diagonal elements when they are 
slowly varying on the interval. Therefore, we obtain a set of uncoupled differential 
equations 

ih f U+y(t) E (A + P?(t) + Q(t) + e-e) lJ+Y(t), (15) 
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where ici and c are the diagonal portions of UtBU and UkXJ, respectively. Equation 
(15) has the analytical solution 

- ti) + B (,+’ T(t) dt + E p’ ’ s(t) dt + 

11 ti 

u +Y(ti) 

(16) 

which may be generalized to include any number of functional dependencies. For 
simplicity in future equations, only one functional time dependence f(t) will be 
retained. 

A similar approach is described by Gordon [31] in order to solve the time- 
independent Schrodinger equation for scattering applications. Since he was dealing 
with a second-order equation, however, it was necessary for Gordon to approximate 
the potential by a linear or quadratic polynomial in order to obtain known, analytic 
solutions. This additional approximation is not required in the present case. 

2. Error Analysis 

Although there exist several error analyses for the piecewise analytical solution 
method applied to second-order differential equations [34, 361, little of this work may 
be carried over to the present problem. The estimate for the error used here is 

[ 

N 3 I&+, (U+gU),,f(ti+,)(U+~(Y(ti+,)),I ‘IN 

E(ti+l)= E 21(/i,,+B,,f(ri+,))(U+~(Y(ti+,)),l ’ 

+ ICk+l ~“+~U)~~f~ci+~~~U+~ci+~~~iI 
I 

(17) 

The function E(ti+,) is not proportional to the error but does vary directly with the 
error. 

Equation (17) may be derived as the approximate error in the solution due to 
ignoring the off-diagonal elements (&?u),. To this end, note that the solution 
presented in Eq. (16) can be considered the first-order solution of the iteration scheme 

ifi -$43f) = [A,, + Bkkf(t)] V(t) + C (u+Bv>,,.T(t) p(t) 
I#k 

(18) 

where t$.“(t) = (U+v(t))k. Although it is not practical to obtain the second-order 
solution, one may use the second-order equation to obtain an estimate of the error. 
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This estimate of the error (from ignoring the off-diagonal elements) can be obtained 
by considering the ratio of the off diagonal to the diagonal elements: 

(19) 

This expression will improperly blow up when <i”(t) is zero for any k. In the time- 
independent case [36] this difficulty arose when evaluating the error as 

and was avoided by taking the error in the Ith element to be 

(21) 

where L, is chosen such that 

p N L,&‘. (22) 

Here, L, may be easily extracted from the ftrst equation in Eq. (18) while the quantity 
I c$“(c) - <~“(t)l may be obtained from the first two equations in Eq. (18). If one takes 
the ratio in Eq. (19) as approximately the same as Eq. (20), then 

Hence, we obtain 

(23) 

(24) 

and Eq. (21) becomes 

where ti2) was replaced by the right side of the second equation in Eq. (18). Unfor- 
tunately, it is difficult to obtain <i2’(t), so we approximate it by (j”(t). 

Equation (25) is an estimate of the, relative error in the Ith component of U ‘tp 
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during the time interval ti to ti+, . If f(t) is expanded in a Taylor series about t,, the 
midpoint of this interval, 

f(t) -f(t,) + (Llt/2)f’(t,) + (dt/2)2/2f”(t,) + *+ * ) 

it may be readily seen that f goes to zero as the leading term (for small dt) in this 
series. The analysis thus predicts that the error in each component will depend on dt 
in the same way as f(1). If the geometric mean of the errors in the component of 5 is 
taken to be the estimate of the single step relative error in the vector v, then Eq. (17) 
is obtained. The geometric mean was used because it was found to perform better 
than various other possible measures of the magnitude of the error. 

The error estimate was used in the same manner as described in the previous error 
analysis Section II.A.2. Equation (12) was used to find the new step size subject to 
the same conditions. 

C. The Gear Integration Package 

Many different algorithms have been proposed for the solution of ordinary 
differential equation initial-value problems. For purposes of comparing with the two 
methods proposed in this work, we have chosen the Gear integration package [27] as 
a representative of ODE solvers which are currently available. This package contains 
an Adams-Moulton predictor-corrector and an algorithm developed by Gear for stiff 
differential equations. In the examples that follow both the predictor-corrector and 
stiff methods were tested to find which yielded the faster, more accurate result. Since 
the equations are stiff only for those examples (and values of the parameters) where 
the Hamiltonian matrix contains highly oscillatory elements, in most cases the 
Adams-Moulton method was used. For brevity we shall refer to either as the Gear 
approach. 

The important distinction between this technique and the previous two approaches 
is that here one must directly follow the solution. If there are many oscillations in the 
solution, the Gear procedure requires many small steps. The piecewise solution 
methods can utilize few steps and, hence, require less computational labor than this 
approach when each step can contain many oscillations of the solution. 

III. ILLUSTRATIVE EXAMPLES 

In this section we shall compare the various techniques outlined above and discuss 
the speed and accuracy of each approach. The comparisons are performed by 
employing examples in which each procedure may be used. Results are compared 
with analytical solutions wherever possible. We shall illustrate cases when the 
piecewise analytical solution methods are clearly superior to Gear’s package and vice 
versa. 
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A. Time-Independent Hamiltonian Model 

If the Hamiltonian is independent of time the analytical solution to Eq. (1) may be 
easily obtained. However, we can transform the problem into the interaction represen- 
tation and introduce a time dependence into the problem in order to provide a non- 
trivial test of the methods of solution. For simplicity, we will deal with a two-state 
problem. A two-state time-independent Hermitian Hamiltonian may be written 

H=(;* ;)=(; ;)+(;* ;)=H,+V, (26) 

where a and d are real. Introducing the transformation 

v(t)=e- (i/N&d+(t), 

the Schrodinger equation becomes 

#l+(t) = e ci/r)HO’ve-(i/*)Ho’~(t) = b*eci,fjld-,,t 
( 

be(ilih)(o-d)t 

0 1 
w 

where the Hamiltonian now oscillates with time. 
In the piecewise Magnus solution for this problem, we obtain from Eq. (6) 

(27) 

W) 

(29) 

on each time interval [tn-,, t,,]. Exponentiation of the matrix can be done in many 
ways [37], but we simply transformed n to a diagonal matrix, exponentiated and 
transformed back. In costly problems it may be useful to compare techniques for 
exponentiating the matrix to determine which one is most efficient [37]. 

For the piecewise analytical solution we expanded the Hamiltonian at the center of 
each time interval as 

H= 
( 

0 be(il&(o-d)r 

b*e(ilh)(d-o)f 0 ) ( 

0 be(i/fi)Cu-d)fn 

= b*e(ilh)(d-a)ro 0 ) 

0 b 
+o 0 ( ) 

(e(i/A)(n-d)l _ e(ilh)la-d)fo ) + ( bt “0) (eWh)Cd-o)t _ ,W&Cd-~ft~~ 

which involves two functions of time. One cannot ignore either of the functions of 
time, since that would lead to a non-Hermitian matrix. The first matrix on the right 
side of Eq. (30) is diagonalized and the transformation is applied to the other two 
matrices, as previously described. One can see that there is more matrix manipulation 
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in this method than in the piecewise Magnus solution and this approach was found to 
be more time consuming. 

The results at t = 10.0 for calculations with each of the three techniques and the 
initial condition 

w(O)= :, ( 1 (31) 

are presented in Tables I and II. Atomic units (a.u.) were used in this calculation (i.e., 
h = 1). The results are ordered in such a way as to allow easy comparison of the 

TABLE I 

Comparisons of the Accuracy of Solutions for the Time-Independent Hamiltonian as a Function of b” 

Execution Number of Execution Number of Execution Number of 
time significant time significant time singificant 

b 6) Iiguresb . (s) figures 6) figures 

1.0 

2.0 

3.0 

5.0 

10.0 

20.0 

30.0 

100.0 

0.020 

0.025 

0.030 

0.040 

0.075 

0.060 

0.070 

0.15 

2 
1 
1 

3 
1 
0 

2 
1 
0 

2 

0 

2 
1 
0 

1 
1 
0 

1 
1 
0 

2 
2 
0 

0.035 

0.050 

0.075 

0.080 

0.15 

0.25 

0.37 

1.2 

3 
2 
4 

3 
2 
3 

3 
2 
5 

3 
2 
2 

3 
2 
3 

3 
2 
3 

2 
2 
1 

4 
3 
2 

0.050 

0.10 

0.10 

0.13 

0.30 

0.66 

1.3 

2.8 

4 
3 
7 

4 
3 
8 

4 
2 
7 

3 
2 
6 

4 
3 
6 

4 
3 
6 

4 
3 
6 

5 
3 
5 

’ The integration period was performed from t = 0 to 10 a.u. and the other parameter values are 
(I= 1.1 and d= 1.0. 

’ The numbers in decreasing order correspond to the Magnus, piecewise analytic, and Gear methods. 
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TABLE II 

Comparisons of the Accuracy of Solutions in the Time-Independent Hamiltonian as a Function of a” 

Execution Number of Execution Number of Execution Number of 
time significant time significant time significant 

a (s) tiguresb (s) figures (s) figures 

2.0 0.030 1 0.050 1 0.10 2 
1 1 2 
1 5 8 

3.0 0.030 1 0.070 1 0.10 2 
0 1 2 
1 6 7 

5.0 0.030 1 0.10 1 0.50 2 
0 1 2 
0 5 8 

10.0 0.030 1 0.10 1 0.70 2 
0 1 2 
0 3 8 

20.0 0.030 1 0.18 1 0.85 2 
0 1 1 
0 3 8 

100.0 0.030 1 0.60 1 1.6 2 . 
0 1 2 
0 3 7 

’ The integration period was performed from t = 0 to 10 au. and the other parameter values are b = 1 
and d = 1.0. 

b The numbers in decreasing order correspond to the Magnus, piecewise analytic, and Gear methods. 

methods. The tables give the number of figures which agree with the analytical wave 
function v(t) from each of the three techniques for a given execution time. For this 
and all the subsequent test problems, repeated runs were performed at different 
tolerances, using interpolation, if necessary, to obtain data for prescribed execution 
times. In Table I, we kept a = 1.1 and d = 1.0 constant and varied b, which is real for 
simplicity. This has the effect of increasing the amplitude of the oscillations in the 
Hamiltonian and the number of oscillations in the solution. As b increases, the Gear 
package requires the largest increase in execution time to attain the same accuracy. 
In all cases the piecewise Magnus solution attains the same or better accuracy as the 
piecewise analytical solution method. Plots of the amplitude of the solutions indicate 
just over three oscillations for b = 1.0, and over 53 oscillations for b = 10.0. 

In Table II, we list the results of calculations in which b = I.0 and d = 1.0 were 
kept constant but a was varied. Increasing a has the effect of introducing oscillations 
into the Hamiltonian and decreasing the effective interaction between the states. The 
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result is that the amplitudes of each state remain near their initial values. For 
a = 10.0, b = d = 1.0 the probability amplitude changes by at most 0.05. 

When a is large, the piecewise Magnus solution method can attain an approximate 
solution with few steps. This arises because the commutator term of the Magnus 
series can be shown to be inversely proportional to (a -4’. It was found for 
a = 1000.0, b = d = 1.0, that the piecewise Magnus solution method yields three- 
figure accuracy in a single step. This is one of the cases where Eq. (7) provides an 
error estimate which is too conservative. 

From Table II one can see that it is difficult for either of the piecewise methods to 
obtain accurate solutions. Here, the Gear program yields three or more figure 
accuracy with less execution time than either of the piecewise methods. 

Several general features of these techniques are apparent from these tables. The 
piecewise Magnus solution and the piecewise analytical solution methods attain 
approximate results before the Gear approach. The Gear program can attain highly 
accurate solutions with less additional execution time, however, once an approximate 
wave function is obtained. This indicates an important factor to aid in the choice of 
the optimum method for a given problem. If one wishes to obtain one to three 
accurate figures in the wave functions, then the piecewise solution methods will be 
preferable. But if highly accurate wave functions (more than 4 figures) are desired, 
the Gear approach often will be preferable. 

Another important factor in comparing techniques lies in the number of initial 
conditions (i.e., initial quantum states) one wishes to study. Since most of the work in 
the piecewise solution methods arise from the manipulation of the Hamiltonian 
matrix, more initial conditions may be performed with a trivial amount of additional 
computer time. However, the Gear program in its present form must be completely 
rerun. In performing the second initial condition for this problem, 

with all the values of the constants given in Tables I and II, it was found that the 
piecewise solution methods required only 10% of the original execution time. There 
are ways in which the Gear program can be used to obtain all the initial conditions in 
a single run. However, it must be remembered that typical physical applications have 
many more coupled equations than this simple test problem. Then it will often be 
impractical to increase the dimensionality of the problem by combining several initial 
conditions in the solution vector. 

B. Spin and Molecular Floppers 

The spin flopper problem arises when a particle with intrinsic angular momentum 
is subjected to a magnetic field which couples the angular momentum projection 
states. For a spin f system, such a field can effectively cause the spin to flop over. 
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Calculations [22,23] and experiments [24] on a spin 1 system have been performed. 
In this case, a mode1 of the flopper field is given by 

M(t) = -MO 2, r < -Lo, 

= M,2 + M&)2, -zo<r<zo, (33) 

= A!f& r>zo, 

where M, and MO are constants and r is the distance in the z direction. M,(t) is given 
by 

MOW = (u/z,) MO f, --t,Qt<t,, (34) 

where a constant particle speed u is assumed, 22, is the length ,of the flopper region 
and to = zo/u. The particle sees a reversed field by virtue of its motion in the z^ 
direction through the field region. 

This mode1 problem is interesting in itself and provides an opportunity to compare 
our results with those from an independent calculation [23]. The Schrodinger 
equation for this problem is given by [23], 

0 GJZO) MO t 0 
-i(Y,lZo) MO t 0 WC (35) 

0 -iyM, 0 

where 

(36) 

y is a constant which arises from the magnetic dipole moment, and x, y, z are the 
Cartesian components of the spin vector. 

The results of several sets of calculations on this problem are presented in 
Table III. In these calculations y = 1.4 MHz/G, z. = 3.75 cm, MO = 2.5 G, and 
M, = --fM,,. Since the length of the flopper region 22, was constant, to changed as 
the speed v was varied in the calculation. For a velocity of lo6 cm/s we have 
to = 3.75 x lOa s. The results illustrated in Table III support the same conclusion as 
indicated in the time-independent problem. At high velocities where there is very little 
change in the wave functions, the Gear package was superior. At slower velocities the 
piecewise solution methods are superior. In general, the piecewise solution methods 
yielded l-3 figure accuracy in the wave function at lower execution time than the 
Gear routine, but the Gear package converged on highly accurate results more 
quickly than the piecewise solution methods. 

Only one initial condition (Eq. (36)) was used in the calculations of Table III. This 
represents the worst condition for comparison since the piecewise solution methods 
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TABLE III 

Execution Times and Accuracy for a Spin 1 Particle in a Flopper Field with Several Different Velocities 

Execution Number of Execution Number of Execution Number of 
V time significant time significant time significant 

(cm/set) (s) figures” 0) figures 6) figures 

5.0 x lo6 0.020 1 0.025 2 0.030 2 
1 1 2 
0 2 4 

1.0 x lo6 0.025 1 
1 
1 

5.0 x lo5 0.030 1 
1 
0 

1.0 x 10’ 0.050 1 
1 
0 

5.0 x 10’ 0.100 1 
1 
0 

1.0 x lo4 0.600 1 
1 
0 

0.035 2 
2 
2 

0.050 2 
1 
1 

0.100 2 
1 
0 

0.300 2 
2 
0 

1.0 3 
2 
0 

0.050 2 
2 
4 

0.100 3 
2 
5 

0.300 3 
2 
3 

0.600 3 
2 
4 

4.0 5 
4 
3 

’ The numbers in decreasing order correspond to the Magnus, piecewise analytic, and Gear methods. 

can handle the additional initial conditions with only a slight increase in execution 
time. For this problem three independent initial conditions may be performed with the 
piecewise solution methods for a one-fourth increase over the execution time while the 
Gear method requires three times longer to do the one calculation. 

We also treated the related problem of a diatomic rigid rotor in a flopper-type 
magnetic field. Since many different rotational states are accessible, this is a more 
versatile and general test problem. Here the time-dependent Hamiltonian is 

H(t) = (l/21) j - j - pM(t) - j. 

Expanding the wave function in terms of a molecular basis set 

(38) 
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leads to the coupled differential equations 

ih &At) -= 
dt 

k (jml$j.j--pM(t).jljm’)a’,.(t), -j<m<j. (39) 
m’= -j 

Using p = yh and explicitly evaluating 
becomes 

the matrix elements, this set of equations 

l)-m(m- 1) 

+a,,.-,+Jj(j+l)-m(m+l) a’,(t), 1 -j < m < j, (40) 

where the time dependence of the magnetic field was taken to be the same as in 
Eq. (34). 

As Eq. (40) stands, it can be solved by the piecewise solution methods but it 
cannot be solved with Gear’s program. This latter difficulty arises since the rotational 
constant B, is typically on the order of 10” Hz and this introduces a highly 
oscillating part into the wave function. By going into an interaction representation, 
one may transform all or part of this oscillating function out of the solution. We can 
introduce an added degree of freedom in the test problem by writing B, j( j + 1) as 
Cj( j + 1) + (B, - C) j(j + 1) and transforming the (B, - C) j( j + 1) term from the 
Hamiltonian into the wave function. One may then compare the three techniques over 
the range of problems in which the Gear program goes from being efficient to being 
incapable of yielding a reasonable solution. We will denote the constant value which 
remains in each diagonal element of the Hamiltonian as Cj( j + 1). 

As before, the constants in Eq. (40) were taken to be y = 1.4 MHz/G, 
z. = 3.75 cm, M, = -+4,, B, = 10” Hz, u = lo6 cm/s, and to = 3.75 X 10m6 s. 
Setting j = 1 produces a three-dimensional problem similar to the spin problem 
presented earlier. Table IV presents the results of calculations in which C and MO 
were varied in the j = 1 case. This table clearly illustrates the regions where the Gear 
method is inappropriate. As the magnitude of C increases, the piecewise methos are 
hardly affected while there is a drastic effect on the Gear solution. At a value of 
C = 10’ Hz one can obtain highly accurate solutions from the piecewise methods 
before any solution can be obtained from the Gear program. The ability of the 
piecewise methods to obtain the correct solution regardless of the magnitude of C 
indicates one of the benefits of these approaches. They “recognize” any analyticity in 
a problem and automatically extract it without an increase in the execution time. 

To amplify the differences between the methods, calculations were performed with 
j = 4 and this gave rise to a nine-state problem. The constants were the same as 
before except that MO was held fixed at 2.5 G. Table V presents the results of 
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TABLE IV 

Execution Time and Accuracy for the j= 1 Molecule in a Flopper Field 
with Several Values of M0 and C 

Execution Number of Execution Number of Execution Number of 
M” cx lo--’ time significant time significant time significant 
Cci (Hz) 

2.5 

2.5 

2.5 

2.5 

5.0 

5.0 

5.0 

5.0 

0.0 

0.1 

1.0 

10.0 

0.0 

0.1 

1.0 

10.0 

- 
6) figures” 6) figures 6) figures 

0.035 1 0.050 2 0.100 3 
0 1 2 
0 1 4 

0.050 I 0.100 3 0.250 4 
I 2 3 
I 3 5 

0.100 3 0.250 4 I.0 5 
2 3 4 
0 I 4 

0.250 4 1.0 5 2.0 6 
3 4 5 
0 0 0 

0.035 1 0.050 I 0.100 2 
0 1 2 
0 0 3 

0.050 I 0.100 2 0.250 3 
I 2 2 
0 2 4 

0.100 2 0.250 3 1.0 4 
1 2 3 
0 I 4 

0.250 3 I.0 4 2.0 5 
2 3 4 
0 0 0 

’ The numbers in decreasing order correspond to the Magnus, piecewise analytic, and Gear methods. 

calculations for this j = 4 problem with variations in the value of C and either one or 
nine orthogonal initial conditions. The one initial condition case is a', = d,,,,,, 
-4 < m < 4, and the nine initial conditions are aj,, = 6,,,, -4 < m, m’ < 4. This 
table exemplifies the benefit derived from the ability of the piecewise solution 
methods to handle any number of initial conditions with ease. In many of the cases in 
which Gear’s method is faster for only one initial condition, the piecewise solution 
methods become superior when the nine orthogonal initial conditions given above are 
desired. 

Figure 1 contains a plot of the probability for the m states from 0 to 4, with w 
initially one for m = 0 and zero for all of the other values of m. Only the positive m 
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TABLE V 

Execution Times and Accuracy for a (j = 4) Molecule in a Flopper Field with Several Values of C and 
Two Different Numbers of Initial Conditions 

No. of Execution Number of Execution Number of Execution Number of 
initial cx lo-’ time significant time significant time significant 

conditions (Hz) 6) figures” 6) figures 6) figures 

1 0.0 0.35 

I 0.1 0.50 

I 1.0 1.0 

I 10.0 1.0 

9 0.0 0.75 

9 0.1 2.0 

9 I.0 7.0 

9 10.0 25.0 

1 
0 
I 

I 
0 
0 

2 
I 
0 

4 
3 
0 

1 
0 
0 

2 

0.50 

1.0 

7.0 

11.0 

2.0 

7.0 

25.0 

60.0 

1 
0 
3 

2 
I 
2 

4 
3 
1 

4 
3 
0 

2 
1 
0 

3 
2 
1 

5 
3 
0 

5 
4 
0 

0.75 

2.0 

II.0 

20.0 

7.0 

16.0 

60.0 

200.0 

2 
I 
4 

3 
2 
5 

4 
3 
3 

5 
4 
0 

3 
2 
4 

4 
3 
4 

5 
4 
1 

6 
5 
0 

’ The numbers in decreasing order correspond to the Magnus, piecewise analytic, and Gear methods. 

states are included in this figure since the negative m states have the identical 
probability amplitudes as their positive counterparts. Many oscillations exist in the 
probability of each m state and the phase of the wave function introduces even more 
variations for these methods to follow. 

C. Stimulated Resonance Raman Pumping 

The stimulated resonance Raman pumping of vibrational states, which is described 
in detail elsewhere [25], was chosen as a problem of current interest in which the 
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0.4 

0.2 

0 
-4 -2 0 2 4 

7-w bmdr) x IO-~ 

FIG. 1. Probability of the m states for a j = 4 molecule entering a flopper magnetic field with the 
initial condition being unit probability for state m = 0. m = 0; --; M = I,...; m = 2, ---; m = 3, ----; 
m = 4, ---. 

methods discussed in this work can be applied. For completeness, we present a brief 
description of the problem and set up the appropriate equations. 

In the stimulated resonance Raman effect two lasers are employed and the inter- 
mediate state is a real excited electronic state of the molecule. Considerable intensity 
enhancement can be achieved in this fashion, This situation is shown in Fig. 2 with 
specific vibration-rotation levels drawn in. 

In an experimental arrangement it may be desirable that the lasers are not in exact 
resonance with any of the states within the excited electronic manifold. This may help 
limit any difficulties due to excessive fluorescence to neighboring states in the ground 
manifold. 

The Hamiltonian for this problem is 

WR f) = K(R) - P(R) . (W) + E,(t)), (41) 

where H,,(R) is the Hamiltonian of the unperturbed molecule, R represents all 
internal coordinates, R(R) is the electric dipole-moment operator, E,(t) is the time- 
dependent electric field from the first laser and E,(t) is the time-dependent electric 
field arising from the second laser. The total wave function can be expanded as 

y(i?, t) = C CEj,(t) e-‘W’ Inujm), 
“” 
im 

(42) 
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ELECTRONIC 
STATE 

FIG. 2. Schematic representation of the stimulated resonance Raman process with two lasers of 
frequency w, and oz. Specific resonant vibration-rotation levels are shown. 

where Cg,(t) is the time-dependent amplitude for the state with the electronic, 
vibrational, rotational, and projection quantum numbers it, U, j, and m, respectively. 
Also, E& and Inujm) are the eigenvalues and eigenstates, respectively, of H,,(R). 

Substituting Eq. (42) into the time-dependent Schrodinger equation leads to the 
usual set of couple differential equations 

ifi dc$f’) = ;$, (nujml p(R) - (E,(t) + E,(t) \n'u'j'm') C;ri,,,(t) 

X exp[i(eEj - ~$~,)t/Zt]. (43) 

By taking the electric fields to be linearly polarized and using the Frank-Condon 
approximation, one may show 
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(nujmlp. E,(t)Jn'v'j'm')=(nvIn'v')~'"'E,(1)~ 

x j, y:(%, ~,)(-lY+~ I//(2j + 1)(2j’ + 1) 

(44) 

where (nv]n’u’) is a Franck-Condon factor, ,u”” ’ is the electric moment between 
states n and n’, E,(t) is the time-dependent magnitude of the electric field, 9, and 4, 
specify the angle between the electric field and the space-fixed z axis, the Ys are 
spherical harmonics, and (: : :) is a 3 -j symbol. A similar expression may be 
written for the electric field of the second laser, E,(t). 

We have some freedom in how we choose the space-fixed z axis and the angles of 
polarization of the electric fields. There is no loss of generality in choosing 
0, = 4, = 0 and 4, = 0 and retaining 8, as the angle between the polarization of the 
two fields. The space-fixed z axis is chosen along the direction of E,(t). Since 8, 
equals zero, Eq. (44) dictates that Am = 0 for all transitions due to the presence of 
the first laser. 

For the time-dependent electric field strengths, we have taken 

E,(t) = dq cos(w,t) exp[-(t2 In 2)/2Ai,,] 

E,(t) = ~~cos(o,t) exp[(--t* In 2)/2A:,,], 
(45) 

where I, and w, represent the intensity and frequency, respectively, of the first laser 
and, similarly, for I, and w, associated with the second laser. The constant c is the 
speed of light and A,,2 is the full width at half maximum, which is assumed to be the 
same for both lasers. The two values of A,,, which were employed in these 
calculations are 

A,,, = 1.47 x 10-l’ s (short pulse) 

= 7.36 x 1O-9 s (long pulse). 
(46) 

The energy differences &:j - E::~, needed in Eq. (43) were obtained from Herzberg 
[38] using the I, molecule as a model case. Between the two electronic states X’ .X: 
and B “ZZ&, the electronic transition moment, ,PVe, has been measured [39] as 

P ‘J = 1.62R, - 3.5 1, 2.8A<R,,<3.1 A 

which yields an average value of 1.27 debyes. 

(47) 

We choose w, such that the states from n = g, v = 0, j = 5 to n = e, v = 0, j = 6 
are in resonance. This corresponds to a value for w, of 2.93819 x lOI set -’ (i.e., 
AD = 6410 A). Similarly, o, is picked such that the states from n = e, u = 0, j = 6 to 
n =g, u = 5, j= 5 are in resonance. This requires w, to be 2.778843 x lOI s-’ (i.e., 
1, = 6778.55 A). One may evaluate the Frank-Condon overlap integrals between 
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these states by using uniform semiclassical Airy wave functions2. The values of the 
pertinent overlap integrals are 

(CO1 go) = 1.12 x 10-4, (eo g5) = 1.927 x 10-2. (48) 

The values for all of the fundamental constants were obtained from Cohen and 
Taylor [40]. 

In the calculation, if one includes only the three molecular states, (g, 0, 5), 
(e, 0,6), and (g, 5,5), then the m degeneracy produces a 35-state problem. Even 
though previous work approximated the problem by ignoring the m dependence, we 
felt some new information might be gained by including the m states and examining 
the effect of the polarization angle on the stimulated resonance Raman process. 

The time dependence of the Hamiltonian can be obtained from Eqs. (43) and (45). 
The functional time dependencies are of the form 

f (1 + exp[ l (5.557686 x lO”)it]} exp[-( 1.6 x 102’) t2], (49) 

where the value of A,,, corresponding to the short pulse was used. 
As the problem stands, the Gear method cannot solve it due to the high frequency 

oscillations. In order to alleviate this difficulty, the rotating wave approximation is 
usually invoked. This involves ignoring the highly oscillatory terms in the 
Hamiltonian. The piecewise Magnus and the piecewise analytical solution methods, 
however, can handle the problem without the rotating wave approximation. This 
provides a test of this common approximation, in addition to indicating a clear 
benefit of the piecewise methods. Since all previous examples indicated that the 
piecewise Magnus solution was faster than the piecewise analytical solution method, 
especially when more than one time dependence of the Hamiltonian was present, only 
the piecewise Magnus solution technique was employed in the calculations on this 
model problem. Performing the calculation,3 one finds that the rotating wave approx- 
imation is excellent in this case; wave functions obtained with and without the 
rotating wave approximation showed agreement in all eight significant figures which 
we examined. 

Therefore, we invoked the rotating wave approximation. Unfortunately, the only 
function of time remaining in the Hamiltonian is the e-‘.6x1021t* term and the 
piecewise Magnus solution method trivially (in one step) provides the analytical 
solution to this problem. Hence, the two procedures cannot be usefully compared 
here, but the problem will be changed to provide a reasonable comparison. Before 
introducing these changes below we first report some interesting results of this 
analytical calculation. Table VI contains the transition probabilities at various angles 
8, between the laser polarization at two sets of values for A,,,, I,, and I,. Here, PE6 
represents the probability amplitude after the pulse for finding the molecule in the 

2 The values of the overlap integrals used were obtained from 1251. 
’ In order to evaluate some of the definite integrals, it was necessary to use an asymptotic expansion 

of the error function, erf(x + iy). 
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TABLE VI 

Stimulated Resonance Raman Pumping Transition Probabilities for 
Various Laser Polarization Angles 8, 

A l/2 1.47 x lo-” s 7.36 x lo-‘s 
L 1.0 X lo-” W/cm2 1.0 X IO9 W/cm’ 
1, 6.7 x lo9 W/cm2 1.5 X IO4 W/cm’ 

0 (W GO p:5 66 p:5 

0 1.52 x 1O-4 1.68 x 10-j 0.460 0.364 
30 8.13 x 1O-4 1.75 x 10-j 0.530 0.25 1 
45 1.83 x 10-l 1.51 x 1o-3 0.544 0.196 
60 3.17 x lo-) 1.01 x 10-j 0.5 11 0.207 
90 4.80 x 10-l 2.81 x 1O-4 0.440 0.290 

state n = e, u = 0, j = 6, summed over the final m states. A similar definition holds 
for P& . For the two sets of conditions given here DePristo et al. [25] reported P& = 
Pi5 = 5.1 x 10e4 and 0.49, respectively, with no angular resolution of the 
probabilities. The equality does not appear to hold and the first value reported earlier 
is a factor of 2 or 3 smaller than the results obtained here. The larger magnitude 
observed here is encouraging since it indicates that the stimulated resonance Raman 
process is more likely to be observed experimentally. It is noteworthy that the 
stimulated Raman process appears to be most efficient at 8 = 0” in both sets of con- 
ditions. 

Comparisons between the Gear and the piecewise Magnus solution methods may 
be performed for the stimulated resonance Raman problem by including some near 
resonant molecular states which are coupled in by Eq. (48). A calculation was 
performed including the molecular states (g, 0, 5), (e, 0,4), (e, 0, 6), (g, 5, 3), 
(g, 5, 5), and (g, 5, 7) and their corresponding m values. This results in a 66 state 
problem. To simplify the problem, we first examined the case with ,9, = o”, where A,,, 
must be zero in all transitions. This uncouples the problem down to four 6-state 
(m = 0, 1, 2,3), one 5-state (m = 4), and one 4-state (m = 5) problem with a 
tremendous savings of computer time. From symmetry considerations it is clear that 
one would obtain the same probability amplitudes for negative m states as from 
positive m states, so it is not necessary to repeat the calculations for the negative m 
states. We impose the rotating wave approximation since the quality of the approx- 
imation has been shown to be high. 

Under the short-pulse condition and any given m value, both procedures yielded 
two significant figures in the wave function at an execution time of about 0.06 s. At 
execution times on the order of 0.20 s, Gear’s program provided six figures while the 
piecewise Magnus solution method only gave three figures. With the long-pulse 
conditions3 the piecewise Magnus solution technique proved superior. The piecewise 
Magnus solution method yielded three significant figures for any one value of m with 
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TABLE VII 

Stimulated Resonance Raman Pumping Transition Probabilities to Resonant and Near-Resonant 
Molecular States for Short and Long Laser Pulses 

A l/2 1.47 x lo-” s 7.36 x IO-’ s 
4 I.0 X IO” W/cm* 1.0 X 10” W/cm’ 
I, 6.7 x lo9 W/cm2 1.5 X 10J W/cm’ 

P& 0.9983 0.175 
54 4.50 x 1o-5 -3 x 10-‘O 
G6 1.33 x 1o-4 0.461 
p:.l 6.02 x IO-’ -8x 10.” 
p:fi 1.43 x 10-j 0.364 
p:, 1.52 x lo-’ -3 x lo-‘” 

execution times as low as 0.06 s while the Gear program did not provide even one 
significant figure until about 0.3 s and gave three-figure accuracy at 6.0 s. 

The results from these calculations are listed in Table VII. Under the short-pulse 
conditions, one can see that the final stimulated resonance Raman product, P& is an 
order of magnitude larger than the probability of the intermediate state P&, and 
nearly two orders of magnitude larger than the probabilities of the near resonant 
states. With the long-pulse conditions, Pg05, P&, and P:5 are within an order of 
magnitude and the probabilities of the near-resonant states approach zero. Here, the 
stimulated resonance Raman pumping works very well as the population of the 
vibrationally excited states, P!), is several orders of magnitude greater than the 
population of any nearby states. A note of caution is necessary, however, since 
oscillations in the probabilities are present due to the quantum-mechanical nature of 
the problem. Hence, for a pulse with a slightly different A,,*, very different 
probabilities may be obtained but we feel that the order of magnitude estimates given 
above will still be valid. 

An interesting feature of these results is the dramatic decrease in the probability of 
the near-resonant states in the long-pulse conditions compared with the short-pulse 
results. In part, this may be due to the smaller amount of power broadening 
associated with the lower intensity. There is also an increase in the resonant states’ 
probability in going from the short pulse to the long-pulse conditions. These results 
indicate that the one way to effect stimulated resonance Raman pumping experimen- 
tally would be with the long-pulse conditions if resonance between the lasers’ 
frequencies and the molecular states can be obtained. 

By comparing the 0 = 0” row of Table VI with Table VII one may see the effect of 
including additional states in the calculations. The error from neglect of states 
appears to be small, even under the short-pulse conditions. 
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IV. CONCLUDING REMARKS 

We have described and tested two numerical methods which can be applied to 
time-dependent quantum-mechanical problems. The methods were applied to a variety 
of test cases where there were several parameter variations within each problem, and 
the results were compared with a standard Gear package program for speed and 
accuracy. Stimulated resonance Raman pumping was described as a special 
physically relevant problem and transition probabilities were reported for a specific 
model. 

The following conclusions can be made concerning the two piecewise approaches: 

(a) The piecewise methods provide a low-order accuracy wave function (l-3 
significant figures) with little execution time. In all the problems studied, an accep- 
table degree of accuracy was present with these techniques even when only a few 
large steps are used in the calculation. 

(b) Convergence to a highly accurate wave function (4-8 significant figures) is 
usually slower than with the Gear procedure. Exceptions arise here when there are so 
many oscillations in the solutions that the Gear method cannot handle the problem. 

(c) In problems where several initial conditions are desired, the piecewise 
solution methods have an advantage over Gear’s program, although the latter 
program could, in principle, be modified to reuse repeated operations. 

(d) If the Hamiltonian contains many oscillations but the solutions do not, 
Gear’s method has an advantage. There are exceptions to this rule (for the piecewise 
Magnus solution approach which are described in the text). 

(e) If the solutions contain many oscillations, the piecewise solution methods 
have the advantage. 

(f) If the Hamiltonian differs only slightly from one which can be solved 
analytically, such as encountered in testing the rotating wave approximation, the 
piecewise solution techniques possess an advantage. 

(g) The piecewise Magnus solution procedure proved to be faster than the 
piecewise analytical solution method. This appears to be due to the additional matrix 
manipulations required by the piecewise analytical solution method. An equivalent 
number of matrix manipulations between the piecewise methods can be achieved 
when only the constant matrix A is retained in the piecewise analytical approach. 

This list provides broad guidelines for choosing the appropriate method for solving 
quantum-mechanical time-dependent problems. Although in many cases no clear 
choice of methods will be possible, the observations presented here will facilitate the 
decision. 

ACKNOWLEDGMENTS 

The authors acknowledge support for this work from the Air Force Office of Scientific Research and 
the Office of Naval Research. 



442 SMITH, AUGUSTIN, AND RABITZ 

REFERENCES 

1. C. B. MOORE, Ed., “Chemical and Biochemical Applications of Lasers,” Vols. I-IV, Academic Press, 
New York, 1977. 

2. K. SAUER, Annu. Rev. Phys. Chem. 30 (1979), 155. 
3. J. T. KNUDTSON AND E. M. EYRING, Annu. Rev. Phys. Chem. 25 (1974), 225. 
4. S. J. ARNOLD AND H. RAJESKA, Appl. Opr. 12 (1973), 169. 
5. J. L. KINSEY, Annu. Rev. Phys. Chem. 28 (1977), 349. 
6. J. I. STEINFELD, “Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy,” 

MIT Press, Cambridge, Mass. 1978. 
7. E. B. WILSON, Annu. Rev. Phys. Chem. 30 (1979), 1. 
8. I. N. LEVINE, “Molecular Spectroscopy,” Wiley, New York, 1975. 
9. J. I. STEINFELD AND P. L. HOUSTON, “Laser and Coherence Spectroscopy” Plenum, New York, 

1978. 
IO. P. A. SCHULZ, AA. S. SUDBO, D. J. KRAJNOWICH, H. S. KWOK. Y. R. SHEN, AND Y. T. LEE, Annu. 

Rev. Phys. Chem. 30 (1979), 379. 
11. R. V. AMBARTZUMIAN AND V. S. LETOKHOV, in “Chemical and Biochemical Applications of Lasers,” 

(C. B. Moore, Ed.), Vol. III, Academic Press, New York, 1977. 
12. W. M. GELBART, Annu. Rev. Phys. Chem. 28 (1977), 323. 
13. R. B. WALKER AND R. K. PRESTON, J. Chem. Phys. 67 (1977), 2017. 
14. S. LEASURE AND R. E. WYATT, Chem. Phys. Lett. 61 (1979), 625. 
15. S. LEASURE AND R. E. WYATI’, Opt. Eng. 19 (1980), 46. 
16. D. W. NOID. C. BOITCHER, AND M. L. KOSZYKOWSKI, to appear. 
17. J. H. EBERLY, B. W. SHORE, Z. BIALYNICKA-BIRULA, AND 1. BIALYNICKA-BIRULA, Phys. Rev. A 16 

(1977), 2038. 
18. Z. BIALYNICKA-BIRULA, I. BIALYNICKA-BIRULA, J. H. EBERLY. AND B. W. SHORE, Phys. Rev. A 16 

(1977), 2048. 
19. R. J. COOK AND B. W. SHORE, Phys. Rev. A 20 (1979), 529. 
20. I. SCHEK, M. L. SAGE, AND J. JORTNER, Chem. Phys. Lett. 63 (1979), 230. 
21. S. C. LEASURE, K. F. MILFIELD, AND R. E. WYATT, J. Chem. Phys. 74 (1981) 6197. 
22. C. R. WILLIS AND R. H. PICARD. Phys. Rev. A 9 (1974), 1343. 
23. B. C. SANCTUARY, Phys. Rev. A 20 (1979), 1169. 
24. (a) R. D. HIGHT, R. T. ROBISCOE. AND W. R. THORSON. Phys. Rev. A 15 (1977) 1079; (b) R. D. 

HIGHT AND R. T. ROBISCOE, ibid. 17 (1978) 561. 
25. A. E. DEPRISTO, H. RABITZ, AND R. B. MILES, to appear. 
26. M. ABRAMOWITZ AND 1. A. STEGUN, “Handbook of Mathematical Functions with Formulas, Graphs, 

and Mathematical Tables,” National Bureau of Standards, Washington, D.C., 1964. 
27. C. W. GEAR, Commun. ACM 14 (1971) 176, 185; A. C. HINDMARSH, “Gear: Ordinary Differential 

Equation System Solver,” UCID-30001, Rev. 3, Lawrence Livermore Laboratory, Livermore, 
California, 1974. 

28. L. R. PETZOLD, SIAM J. Numer. Anal. 18 (1981), 455. 
29. D. R. DION AND J. 0. HIRSCHFELDER, Advan. Chem. Phys. 35 (1976) 265. 
30. S. CHAN, J. C. LIGHT, AND J. LIN, J. Chem. Phys. 49 (1968), 86. 
3 1. R. G. GORDON, J. Chem. Phys. 51 (1969), 14; in “Methods of Computational Physics” (B. Alder, S. 

Fernbach, and M. Rotenberg, Eds., Vol. 10, Academic Press, New York, 1971. 
32. W. Magnus, Commun. Pure Appl. Math. 7 (1954), 649. 
33. P. PECHUKAS AND J. C. LIGHT, J. Chem. Phys. 44 (1966), 3897. 
34. W. B. NEILSEN AND R. G. GORDON, J. Chem. Phys. 58 (1973), 4131. 
35. A. ASKAR, Phys. Rev. A 10 (1974), 2395. 
36. MITCHELL D. SMOOKE, Ph.D. Thesis, Harvard University, July 1978. 
37. C. MOLER AND C. VAN LOAN, SIAM Rev. 20 (1978), 801. 
38. G. HERZBERG, “Spectra of Diatomic Molecules, ” Van Nostrand-Reinhold, Princeton, N. J., 1950. 
39. J. B. KOFFEND, R. BACIS, AND R. W. FIELD, J. Chem. Phys. 70 (1979), 2366. 
40. E. R. COHEN AND B. N. TAYLOR, J. Phys. Chem. Ref. Data 2 (1973), 663. 


